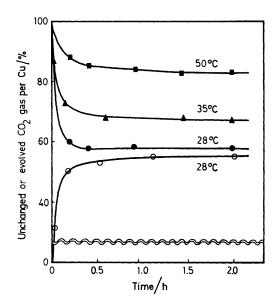
Reversible Carbon Dioxide Fixation by Organocopper Complexes

By TETSUO TSUDA, YOSHIKI CHUJO, and TAKEO SAEGUSA* (Department of Synthetic Chemistry, Faculty of Engineering, Kyoto University, Kyoto, Japan)

Summary Reversible CO_2 insertion into the Cu(I) phenylacetylide-phosphine complex, $PhC \equiv CCu \cdot (PBun_3)_3$, is described; the complex behaves as a reversible CO_2 carrier under mild conditions.

INTEREST in transition-metal complexes which reversibly fix CO₂ via insertion or co-ordination is increasing rapidly,



FIGURE] Carboxylation of $0.72 \text{ mM} (\blacksquare)$, $0.57 \text{ mM} (\blacktriangle)$ and $0.46 \text{ mM} (\textcircled{\bullet})$ of PhC \equiv CCu·(PBuⁿ₃)₃ in 5 ml dimethylformamide with an equimolar amount of CO₂ gas, and decarboxylation of $1.11 \text{ mM} (\bigcirc)$ of PhC \equiv CCO₂Cu·(PBuⁿ₃)₃ in 5 ml dimethylformamide.

partly because they offer excellent models for investigating the interaction between the transition-metal complexes and CO_2 , and partly because they may be expected to function as reversible carriers of activated CO_2 which can transfer CO_2 to other organic substrates. However, there is no precedent for reversible CO_2 insertion into the transition metal-carbon bond involved in a variety of transition metal-catalysed reactions. We now report reversible CO_2 insertion into the copper-carbon bond of a Cu(I) phenylacetylide complex under mild conditions.

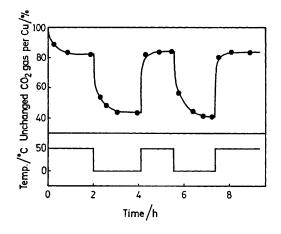


FIGURE 2. Cycle of CO₂ gas absorption-evolution by alternate heating and cooling the system of $0.76 \text{ mM PhC} \equiv \text{CCu} \cdot (\text{PBun}_3)_3$ and 0.76 mM CO_2 gas in 5 ml dimethylformamide.

All experiments described below were carried out in a closed vessel of ca. 270 ml volume under nitrogen. Cu(I) phenylpropiolate prepared from Cu(I) t-butoxide and phenyl

propiolic acid in diethylether at -10° C was found to undergo a quantitative and irreversible decarboxylation in dimethylformamide at 35 °C to produce Cu(I) phenylacetylide. In the presence of three equivalents of $PBun_{3}$, the decarboxylation did not proceed to completion and becomes reversible (equation 1). The reversibility of equation 1

$$PhC \equiv CCO_2Cu \cdot (PBu^n_3)_3 \rightleftharpoons PhC \equiv CCu \cdot (PBu^n_3)_3 + CO_2 \quad (1)$$

was demonstrated by the following experimental results; (i) the reaction reached a state of equilibrium (Figure 1); (ii) on treating with methyl iodide, the equilibrated reaction mixture from either the carboxylation of the Cu(I) phenylacetylide-phosphine complex or the decarboxylation of the Cu(I) phenylpropiolate-phosphine complex produced both methyl phenylpropiolate and methylphenylacetylene. Previously we reported CO, insertion into Cu(I) phenylacetylide in the presence of an equimolar amount of a σ -donating ligand under the relatively severe conditions of 80 °C and 50 kg cm⁻² CO₂.¹ The present study demonstrated reversible CO_2 insertion into the Cu(I) phenylacetylide-phosphine complex at ambient temperature and ordinary CO, pressure.

Increasing the molar ratio of $PBu_{a}^{n}-PhC \equiv CCu$ from 1 to 2 or 3 increased the rate of carboxylation, but there was no difference in the carboxylation behaviour between the $PhC \equiv CCu-3PBu_{3}^{n}$ and $PhC \equiv CCu-4PBu_{3}^{n}$ systems, which suggests that three PBuⁿ₃ ligands are co-ordinated to the Cu(I) species, forming the co-ordinatively saturated complexes (equation 1). In accord with our previous study,¹ the nature of the ligand played an important role, controlling the equilibrium position in equation 1. A ligand of higher σ -donating strength promoted carboxylation; the equilibrium values of unchanged CO_2 gas were 67% (PBuⁿ₃), 83% (PPh₃), and 89% (P(OMe)₃).

The reversibility of equation 1 means that the complex acts as a reversible CO_2 carrier. This property is illustrated in Figure 2 where alternate heating and cooling of the $PhC \equiv CCu \cdot (PBun_3)_3 - CO_2$ system causes a cycle of CO_2 absorption and evolution. The present carboxylation of the Cu(I) phenylacetylide-phosphine complex is the first example of reversible CO₂ insertion into an organotransition metal complex.²

(Received, 6th October 1975; Com. 1141.)

¹ T. Tsuda, K. Ueda, and T. Saegusa, J.C.S. Chem. Comm., 1974, 380. ² Cyanomethylcopper(I) (T. Tsuda, T. Nakatsuka, T. Hirayama, and T. Saegusa, J.C.S. Chem. Comm., 1974, 557) has also been found recently to undergo a reversible CO₂ insertion into the copper-carbon bond in the presence of phosphine ligand. This work will be reported in a separate paper.